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THEORY FOR ECCENTRIC CYLINDERS WITH A BOUNDARY CONDITION OF THE
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This paper shows that the steady-state heat conduction problem for ec-
centric cylinders with a boundary condition of the third kind on one of
them can be reduced to the finite-difference solution of the equations,
Graphs of the temperature distribution for the case of a plane and cyl-
inder, where the surface of the plane cools down in accordance with
Newton's law, are given.

Some steady-state problems of heat conduction
theory reduce to a solution of the Laplace equation

Pu

i o =0inD @)
with the boundary condition

7]

=t hue = F (), (2)

on

where h, is a positive constant; f(p) is a prescribed ;
function.

In the general case the boundary conditions (2) do
not allow effective use of the method of conformal
mapping for the solution of the problem,

However, we can distinguish a class of regions for
which after transformation to a circle the problem
reduces to the solution of certain equations by the
method of finite differences [5]. Several physically
interesting problems can be solved by using a linear
fractional transformation [1]

W=a_§il’, (3)
ct4-d

where £ = pexpif; a, b, ¢, d are parameters.
The special feature of transformation (3) is that
the modulus of the derivative of the image function
is also a rational fractional function
lﬂ _ lad-—cb] 4)
dg| (@+dli+d’

where £ = pexp (—i6); this enables us to reduce some
of the problems (1), (2) to the solution of second-order
linear difference equations.

1, STATEMENT OF PROBLEM AND REDUCTION TO
FINITE-DIFFERENCE EQUATION

We consider a system of bipolar coordinates (; 8),
connected with the Cartesian coordinates (x,y) by the
by the relationship [2]

x—{—iy:ctha——}_f—ﬁ, — <ol + @,
2 —a <P+ (5)

The lines g = const are the arcs of circles passing
through points x = ¢

ey ©)
sin?f

The lines @ = const are circles orthogonal to them

02
shfa
The Laplace operator and the square of the linear
element are written in the form:

(x—fcctha)2+y2= (M)

a7 hect ash? 97 9T,
c da?  Of?
dszzcz(da2+d52) (8)
(cha + cos 6)2'

Problem 1, To find the steady~state temperature
distribution between two infinite eccentric cylinders,
one.of which (the inner one, @ = ) is maintained at
constant temperature, while the surface of the outer
cylinder (@ = a;) radiates heat according to Newton's
law (for a plane @y = 0, Fig. 1).

In the selected coordinate system the problem re-
duces to the solution of the equation

T | OT ) 1 <e <ty ©)
dar  apr | —m<Pp<+n
with boundary conditious
_ 0T chafeosp o ,pl o —ngp<+m (10)
da c =
T|G=do =-T0’ —ﬂ<ﬂ<+ﬂy (11)

where h is a positive constant.
We seek the solution of problem (9)—(11) in the
form

T B) = To+%° (@ — oo+

+‘2Cnshn(a-—ao)cosnﬂ. (12)

n=l

Substituting (12) in the boundary conditions (10)
and introducing the symbol

B, =(—1lnC,chnfogy—a), n=1,2,3,..., (13)
we obtain equations for the coefficients By

Bty + Boy = { cha, + 2he ih_’l(“—n“:—“l B,

n=1, 2,3, ... (14)
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Fig. 1. Cylindrical tube buried in ground.
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Fig. 2. Temperature as a function of y/c at x = 0 (Tp is the
tube temperature): 1) he = 0.5; 2) 1; 3) 2.
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Fig. 3. Temperature as function of y/c atx = 0 (Q is the
heat flux from tube) (1-3 as in Fig. 2).
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with conditions:

By Ich oy + ke (ag—ay)] — B, = 2hcT,, 15)
B, 0, n—> o. (16)

If the solution of equations (14)—(16) is found, the
temperature distribution on the surface of the outer
cylinder is determined from the formula

Tla — o, =To_{%g(ao—a1)+
+ 2 (—1yrB, L= ) ool a7
=1 n

Problem 2. To find the steady-state temperature
distribution between two eccentric cylinders if a uni-
formly distributed heat flux @ arrives from the sur-
face of the inner cylinder (@ = ag), while the outer
cylinder (@ = @) radiates heat according to Newton's
law. The temperature of the external medium is zero.

Table 1

Solution of Eq. (14) for Casea; = 0, ay = 1,
he =1, P, =0, Ry = 1, C; = 1.190618

n Yy P, R,
1 3.52318 1.00000 0.320201

2 2.96402 3.52318 0.128128

3 2.66336 9 .44278 0.0595714
4 2.49966 21.62634 0.0305320
5 2.39996 44 .6157 0.0167482
6 2.33334 85.4496 0.00966315
7 2.28571 154 .7673 0.00579942
8 2.25000 268 .304 0:00359264
9 2.22222 448 .917 0.00228402
10 2.20000 729.288 0.00148295

The problem reduces to the solution of the equation

I IT o a<o<a,
da? P2 @ —n<BP< -+, (18)
with boundary conditions
oT cha 4
__Ca—_'_(:()s_ﬁ+hT =0, _n<ﬁ\<+n, (19)
aa c a=a1

ol _Q _ she
daly—a, nK 2chag+2cosP

where K is the thermal conductivity, Q is the heat
flux in unit time per unit length, and h is a positive
constant,

We select a special solution of the problem (18),
(20} in the form [2]

aLBL+ a0 (20)

T =T,+T, (21)
where

Q fo—auq,
T, =—— 22
T rK 2 +

- (—Drexp{—na,}shn (@ —a,) 1
+n§=:l - chn(ag—a) cosnBr. (22)

Then, to determine T, we have the equations:

AT, = 0in D; 9%2|
R

= 0;
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ar,

=0, an

oTy + hT,

;
on (23)

a=q,y

We seek the solution of problem (23) in the form
T, (a; B) =—Q—{é’+ S:A chn(a—a)cosnﬁ}. (24)
2\ J'LK 2 - n 0,

Substituting (24), (22), and (21) in the boundary
conditions and introducing the symbol

M, =(—=1y*'nA,shn{e,—a), n=1,2,3, ..., (25)

we obtain equations for the coefficients M,

My + My = { 2cho, +

+ 9% M}Mn—bn (26)
n
with conditions
My=0and M, -0, n—»> o, 27)

where

by=0a,,1+ 0, —2cham, n=1,2,3, ...;
exp{ —nay}
= ———"2 - n=0,123, .... 28
* chn(a,—a,) (28)

The coefficient A; is determined from the condition

hcA, = cha;, —a, — M,. (29)

If the solution of Egs. (26), (27), and (29) is found,
the temperature distribution on the outer cylinder
can be written in the form

! _ Q {,40 n

T =
a=ay n K

- cthn (o — o)
n

+ Y (=i,

n=1

cosnﬁ}_ (30)

7

2. SOLUTION OF EQUATIONS IN FINITE DIFFER -
ENCES

We consider the possible solutions of Eq. (14),
which we write in the form

By +Byy=v,B,, n=1,23,..., (31)
where

thn(ay —a,)
—

Y, =2cha, 4 2hc

As follows from the theory of continued fractions
[4], two linearly independent solutions of Eq. (31) can
be represented as the numerator and denominator of
the n-th convergent fraction

Sel gy L, n=1,23.... (32)

The numbers P, can be obtained from the equation

Pn+1+P—1=Yan n=1,23, ... (33)
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Table 2

Solution of Eq. (26) for Case ;= 0; aq = 1, he = 1, Py = 0,

Rg=1, Mg = 0
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" Yn Pn Ry by M,
1 4.62608 1.00000 0.235984 0.55917 0.148893
2 3.03732 4.62608 0.0916843 0.17140 0.129625
3 2.66998 13.05088 0..0424913 0.026752 0.0734212
4 2.50034 30.21951 | 0.0217659 0.0036946 0.0369549
5 2.40004 62.5081 0.0119308 0.00050142 0.0220346
6 2.33333 119.8024 0.00686848 0.00006788 0.0127277
7 2.28571 217 .0304 0.00409564 0.0000091881 0.00759544
8 2.25000 376.266 0.00249296 | 0.0000012433 | 0.00462405
9 2.299922 629 .568 0.00151352 | 0.0000001683 | 0.00280744
10 2.20000 1022 .773 0.00087041 —_ 0.00161454
and the "initial" conditions Thus, the general solution of Eq. (31) can be writ-
ten in the form
P,=0;, P,=1 (34)
B,=CR,+C/P,, n=0,1,2, ..., (42)
Then
where C; and C, are arbitrary constants.
Ry=vVi Pa=viVo— L Py=vVo¥s—Y1—Vs ---. (35)

For vy, given by expressions (31) or (26) the num~
bers P, are a monotonically and indefinitely increas-
ing sequence of numbers [4].

To construct the monotonically decreasing, zero-
bounded sequence of numbers Ry, satisfying the equa-
tion

Rn+1 + Rn-l = Yan n=1,2,3, ... (36)
if
R,>0, n— oo, (37)

we use the main properties of linear equations in
finite differences [3]. We multiply Egs. (33) and (36)

by Ry and P, respectively, and substract one from
the other. After transformations we obtain

R, P, i

i =P, R,—R,. P, =

iRna—l Pn+1! n+1iln Rll‘l n

= Pan-—l —Rrapn~1 = const = lr (38)

from which

)2

Pn : Pn*l ﬁ_u
=&i&:@!RJL _—__._1_ (39)
‘DnPn+1 PflPﬂ+1
or*
SR
Ry=P, ¥ ——. (40)
/gz Pkpkﬂ
From (40) we have
Ry=1 R, -0, n—»>o. 41)

*It is easy to show that the numbers R differ by a
constant factor in the case of different "initial" con-
ditions (34) for P.
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Fig. 4. Temperature distribution
on surface of tube (Q is the heat
flux from the tube): 1) he = 0.5;
2} 1; 3) 2; 4) o,
From the condition of boundedness of the numbers
B, we must put C, = 0 and then we have
Bn=C1Rm n=0,1,2 .... 43)
Substituting (43) into condition (15), we obtain

2hcT,

C, = (44)
! Rylchay+hc(ey— o) — R;
or, finally,
_ 2hcT R,
" Rylchay + he(ag—a)l —R,
n=0,12,.... (45)

Table 1 gives the values of the numbers vy, Py,
and Rp for the case @y = 0; a9 = 1; he = 1.

Figure 2 shows graphs of the temperature distri-
bution on the plane (@, = 0) for cases o = 1; he = 0.5;
he = 1; he = 2.

As follows from (26), the solution of problem 2 re-
duces to the solution of the equation

My, + My =yM,—b,, n=1,23,... (46)
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with the conditions

My=0; M,»0, n—> oo, (47)
where
cthn(ay—ay)
n
n=123, .... (48)

Yo, =2cha; +2Ahc

The general solution of Eq. (46) can be written in
the form [3]

M,= M, + C,R, +C,P,, (49)

where R, and Pn are the solutions of the correspond-
ing homogeneous equation; C; and C, are arbitrary
constants; My is a special solution of the inhomogene-
ous equation.

The solutions of R, and P, can be constructed sim-
ilarly to (35), (40) from the numbers (48). To con-
struct a special solution we can use the method of
variation of constants [3]

Mn :Cl (n) Rn+C2(n) Pn' (50)

After simple transformations we obtain
Cilm) =X 0Py Co(m)= Y buRs. (51)
k=1 k=n-+1

The solution of Eq. (46) with conditions (47) can
finally be written in the form
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My=R, ¥ bPy+P, N bR, (52)
k=1

k=n+1

Table 2 gives the values of the numbers v,; Pn;
R bps M, for the casea; = 0; 9 = 1; he = 1.

Figure 3 shows graphs of the temperature distri-
bution on the plane {@; = 0) for cases oy = 1; hc = 0.5;
he = 1; he = 2. Figure 4 shows graphs of the tempera-
ture distribution on the tube surface (@ = oy = 1) for
cases @; = 0; hc = 0.5; he = 1; he = 2.
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